1	
2	
3	The role of primary and secondary infection in host
4	response to <i>Plasmodiophora brassicae</i>
5	
6	Mary Ruth McDonald ¹ *, Kalpana Sharma ^{1, 2} , Bruce D. Gossen ² , Abhinandan Deora ^{1, 2} ,
7	Jie Feng ³ , and Sheau-Fang Hwang ³
8	
9	¹ Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1 Canada
10	² Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, S7N
11	0X2 Canada
12	³ Crop Diversification Centre North, Alberta Agriculture and Rural Development,
13	Edmonton, AB, T5Y 6H3
14	[*] Author for correspondence (phone: +01 519 824 4120; Fax: ++01 519 763 8933); E-
15	mail: mrmcdona@uoguelph.ca
16	Short title: Secondary zoospores of Plasmodiophora brassicae
17	

1 Abstract

2 The disease cycle of *Plasmodiophora brassicae* consists of a primary phase in root hairs 3 followed by a secondary phase in the root cortex and adjacent tissues. However, the role 4 of root hair infection in subsequent cortical infection and development of P. brassicae is 5 not well understood. To examine the role of the primary and secondary stages separately, 6 inoculation studies with resting spores (source of primary zoospores) and secondary 7 zoospores of a virulent and avirulent pathotype were conducted on canola (*Brassica*) 8 *napus*). The size of secondary zoospores and number of nuclei were also examined. The 9 zoospores were larger (~ 9.6-14.4 μ m) than in previous reports and all were uni-nucleate. 10 Inoculation with secondary zoospores alone produced both primary and secondary 11 infection, even with the avirulent pathotype. No symptoms developed from inoculation 12 with avirulent primary zoospores, but tiny, bead-shaped clubs developed from inoculation 13 with avirulent secondary zoospores. Inoculation with virulent secondary zoospores alone 14 resulted in lower disease severity than inoculation with virulent resting spores alone. The 15 results indicate that recognition of infection by the host, and initiation of a response 16 (induction or suppression of resistance) occurs during primary infection, although 17 recognition can also occur during cortical infection and development. 18 **KEY WORDS:** clubroot, cortical infection, zoospores, resistance, canola 19 20 21 22 23

1 Introduction

2 *Plasmodiophora brassicae* Woronin, an obligate parasite causing clubroot, is an 3 emerging threat to canola (*Brassica napus* L.) production in Canada (21, 23) and across 4 the Northern Great Plains of the United States. The disease cycle of *P. brassicae* consists 5 of two phases, a primary phase that is restricted to root hairs and occasionally epidermal 6 cells, and a secondary phase that involves pathogen infection and proliferation within the 7 root and subsequent symptom development (24). In the primary phase, resting spores in 8 the soil germinate and release primary zoospores that penetrate root hairs to form primary 9 plasmodia. The primary plasmodia form multinucleate zoosporangia that produce uni-10 nucleate secondary zoospores. This process takes about 5 days at the optimum 11 temperature of 25° C (38). The secondary zoospores are released into the soil solution, 12 infect root cortical cells, and develop into motile secondary plasmodia (10, 27). After a 13 mobile phase within the root, the young plasmodia coalesce into sessile vegetative 14 plasmodia that divide to form long-lived resting spores (10, 24, 27). Cortical infection 15 results in hyperplasia and hypertrophy of the root cells, which produces the characteristic 16 swollen, rounded clubbed root symptoms (24, 27). Clubbed roots are readily visible 17 within 5 to 6 weeks of inoculation at temperatures of $20-25^{\circ}$ C (39). 18

18 The roles of primary and secondary infection in pathogenesis by *P. brassicae* are 19 not fully understood. Primary and secondary zoospores cannot be differentiated visually; 20 both are ovate with two whiplash flagella of unequal length (12,13, 24). Some authors, 21 and at least one authoritative pathology textbook, have concluded that secondary 22 zoospores fuse to form bi-nucleate zoospores prior to infecting the root cortex (2, 10, 24),

1	but observation of fusion has not been reported (10). Thus, it is still unclear whether
2	fusion of secondary zoospores is a necessary step prior to cortical infection.
3	Inoculation with resting spores initially produces only primary (root hair)
4	infection, but inoculation with secondary zoospores results in both primary and secondary
5	infection in susceptible hosts (12, 35). Primary infection occurs in both susceptible and
6	resistant host cultivars (6, 8, 15, 34). Primary infection can also occur in several non-host
7	species (34), but secondary infection and development of small numbers of resting spores
8	has been reported in only a fewspecies that are generally considered non-hosts(33).
9	It is not known whether primary infection affects the initiation of resistance in
10	host species. However, recent studies indicate that non-host resistance to secondary
11	infection is induced initially during root hair infection. Inoculation of a non-host,
12	perennial ryegrass (Lolium perenne L.), with secondary zoospores resulted in secondary
13	infection and production of young plasmodia, but not mature plasmodia or resting spores
14	(12).
15	The predominant pathotypes of <i>P. brassicae</i> in Canada are pathotypes 2, 3, 5 and
16	6 (based on the differential set of Williams (45) and confirmed using the European
17	Clubroot Differential set (42, 43). Several pathotypes of <i>P. brassicae</i> are present on the
18	Canadian prairies, and more than one pathotype can be present in a field (4, 43, 46).

19 However, pathotype 3 is the predominant pathotype found on canola in the region (4).

20 Breakdown of resistance to *P. brassicae* has been documented in numerous Brassica

21 species (9, 32). Loss of genetic resistance is a concern for Canadian canola producers (23,

32), where resistance represents one of the most effective tools to manage clubroot (18).

1	The current study was conducted to assess the roles of infection by primary and
2	secondary zoospores in the initiation of susceptibility and resistance to P. brassicae in
3	canola. Experiments were conducted to compare both compatible (susceptible host) and
4	incompatible (resistant host) reactions of canola plants inoculated with primary and /or
5	secondary zoospores of virulent and avirulent pathotypes of <i>P. brassicae</i> . The treatments
6	were selected to permit evaluation of two competing hypotheses of disease reaction to
7	clubroot. One hypothesis was that primary infection suppresses initiation of resistance in
8	a susceptible cultivar and stimulates initiation of resistance in a resistant cultivar. The
9	alternative was that primary infection has no effect on initiation of resistance. In addition,
10	flagellate and encysted secondary zoospores were examined to determine whether they
11	were uni- or bi-nucleate and to confirm their morphology.

Materials and Methods Plant material, inoculum, and inoculation

15 The canola cv. 'Zephyr' (AAFC, Saskatoon, SK, Canada) was selected for the study 16 because it is resistant to pathotype 6 (P6) of P. brassicae but susceptible to P3 (Deora, 17 unpublished). All plants were watered daily with demineralised water adjusted to pH 6.3 18 using commercial vinegar (5% acetic acid), and fertilized weekly with a nutrient solution 19 composed of 0.025% each of NPK (20:20:20, Plant Products Co. Ltd., Canada). 20 A field isolate of P3 was obtained from clubbed roots of canola grown in a 21 commercial field near Edmonton, AB, Canada, where P3 is predominant (42, 43). An 22 isolate of P6 (S. Strelkov, personal communication) was obtained from clubbed roots of 23 canola grown at the Muck Crops Research Station of the University of Guelph, Holland 24 Marsh, ON, Canada. Inoculum of each pathotype was increased prior to the study on the

highly susceptible Shanghai pak choy cv. Mei Qing Choy (Stokes Seeds, St. Catharines,
 ON, Canada) under controlled conditions (40). The clubbed roots were stored at -20° C
 prior to use.

4 Inoculum of resting spores was prepared based on the method of Jones et al. (26). 5 Briefly ~3 g of frozen clubs (swollen clubbed roots) were thawed at room temperature, 6 homogenized in 100 ml of water at high speed for 2 min, and the resulting spore 7 suspension was strained through eight layers of cheesecloth. The resting spore concentration was determined using a haemocytometer and adjusted to 3×10^5 spores ml⁻ 8 9 ¹. Freshly prepared inoculum was used for each inoculation. Five-day-old seedlings were 10 inoculated by pipetting 5 ml of the spore suspension at the base of each seedling and 11 control plants were mock inoculated with deionized water.

12 Inoculum of secondary zoospores for an initial trial in cell culture plates was 13 produced using the method of Feng et al. (12) with only slight modification. Seed was 14 planted in 20 cm \times 20 cm \times 10 cm plastic trays filled with washed, autoclaved coarse sand. Seven-day-old seedlings were inoculated with 500 ml of 1×10^8 resting spores ml⁻¹. 15 16 To avoid cross-contamination, separate trays were used for each pathotype. After 7 days, about 4000 plants were uprooted and the roots were washed with tap water. The foliage 17 18 was then cut off near the hypocotyl, and the roots were further rinsed three times by 19 shaking at 150 rpm for 20 min in 200 ml of sterile deionized water in a 500 ml flask. The 20 roots (~1000 per flask) were shaken for 20 h in 50 ml deionized water at 100 rpm to 21 stimulate the release of secondary zoospores. After removing the roots, 10 ml of the 22 zoospores suspension was concentrated by centrifugation at 5000 g for 5 min and adjusted to 1×10^6 zoospores ml⁻¹. Ten samples of this suspension were examined 23

Page 7 of 40

I	microscopically to confirm that no resting spores were present in the suspension. The
2	concentration of secondary zoospores in the initial inoculum suspension was estimated
3	using a haemocytometer and adjusted to 3×10^5 spores ml ⁻¹ . The spore suspension was
4	then used immediately for inoculation.
5	For the study of symptom development, secondary zoospores were produced on
6	canola seedlings planted in Conetainers (plastic 21 cm \times 3.8 cm cones Conetainers,
7	Stuewe and Sons Inc., Corvallis, OR) filled with sand, thinned to five seedlings per cone,
8	and inoculated with 5 ml of 1×10^8 resting spores ml ⁻¹ per cone at 5 days after seeding
9	(DAS). The seedlings were washed and then planted directly into treatment cones as a
10	source of secondary zoospores at 7 days after the initial date of inoculation with resting
11	spores (12 DAS) (35). This approach was used because it was not possible to harvest the
12	large number of secondary zoospores required using the initial methodology.
13	
14	Primary and secondary infection
	T Timur y una seconaul y intection
15	Canola seed was sown into 24-well cell culture plates (Sigma Aldrich Canada Ltd.,
15 16	Canola seed was sown into 24-well cell culture plates (Sigma Aldrich Canada Ltd., Oakville, ON, Canada) filled with sand. The plates were watered daily and maintained in
15 16 17	Canola seed was sown into 24-well cell culture plates (Sigma Aldrich Canada Ltd., Oakville, ON, Canada) filled with sand. The plates were watered daily and maintained in a growth room at 20°/25° C (day/night) with 75% relative humidity and a 16-h
15 16 17 18	Canola seed was sown into 24-well cell culture plates (Sigma Aldrich Canada Ltd., Oakville, ON, Canada) filled with sand. The plates were watered daily and maintained in a growth room at 20°/25° C (day/night) with 75% relative humidity and a 16-h photoperiod. After 5 days, the plates were thinned to one seedling per cell. Each
15 16 17 18 19	Canola seed was sown into 24-well cell culture plates (Sigma Aldrich Canada Ltd., Oakville, ON, Canada) filled with sand. The plates were watered daily and maintained in a growth room at 20°/25° C (day/night) with 75% relative humidity and a 16-h photoperiod. After 5 days, the plates were thinned to one seedling per cell. Each experimental unit consisted of a single seedling, and the study was arranged in a
15 16 17 18 19 20	Canola seed was sown into 24-well cell culture plates (Sigma Aldrich Canada Ltd., Oakville, ON, Canada) filled with sand. The plates were watered daily and maintained in a growth room at 20°/25° C (day/night) with 75% relative humidity and a 16-h photoperiod. After 5 days, the plates were thinned to one seedling per cell. Each experimental unit consisted of a single seedling, and the study was arranged in a randomized complete block design (RCBD), with four replicates at each of three
15 16 17 18 19 20 21	Canola seed was sown into 24-well cell culture plates (Sigma Aldrich Canada Ltd., Oakville, ON, Canada) filled with sand. The plates were watered daily and maintained in a growth room at 20°/25° C (day/night) with 75% relative humidity and a 16-h photoperiod. After 5 days, the plates were thinned to one seedling per cell. Each experimental unit consisted of a single seedling, and the study was arranged in a randomized complete block design (RCBD), with four replicates at each of three sampling dates. There were nine inoculation treatments: 1) resting spores (RS) of P3, 2)
 15 16 17 18 19 20 21 22 	Canola seed was sown into 24-well cell culture plates (Sigma Aldrich Canada Ltd., Oakville, ON, Canada) filled with sand. The plates were watered daily and maintained in a growth room at 20°/25° C (day/night) with 75% relative humidity and a 16-h photoperiod. After 5 days, the plates were thinned to one seedling per cell. Each experimental unit consisted of a single seedling, and the study was arranged in a randomized complete block design (RCBD), with four replicates at each of three sampling dates. There were nine inoculation treatments: 1) resting spores (RS) of P3, 2) RS of P6, 3) RS-P3@10 DAS, 4) RS-P6@10 DAS, 5) secondary zoospores (SZ) of P3,

1	water only. All of the resting spore treatments except those designated as '@10 DAS'
2	were applied to 5-day-old seedlings. Secondary zoospore treatments and the late (@10
3	DAS) resting spore treatments were applied to 10-day-old seedlings. Each seedling was
4	inoculated by pipetting 0.5 ml of 3×10^5 spores ml ⁻¹ at the base of the seedling. At
5	optimum temperature for pathogen development, the primary phase of development is
6	nearly complete and secondary zoospores are released at about 5 days after inoculation
7	(39, 40). Therefore, secondary zoospores were applied 5 days later than the primary
8	zoospores to ensure that, as much as possible, secondary infection in all of the treatments
9	occurred at the same time, and that the seedlings were at a uniform developmental stage
10	when secondary infection occurred. The late inoculation treatments with resting spores
11	were included to provide an inoculated control for treatments at 10 DAS.
12	Four seedlings per treatment were destructively sampled at 11, 13 and 15 days
13	after seeding (1, 3, and 5 days after application of the secondary zoospores and late
14	application of resting spores). The root of each seedling was separated from the foliage,
15	washed in running water, and placed individually in 2-ml centrifuge tubes containing a
16	fixative solution of 50% ethanol. Five fields of view along a 2-cm-long root segment
17	from each taproot were assessed using a compound microscope with a 10x objective lens
18	(39). In each field of view, the incidence of root hair infection and secondary plasmodia
19	in cortical tissue were counted based on the method of Feng et al. (12).
20	
21	Symptom development

22 Seeds of canola cv. 'Zephyr' were planted in Conetainers filled with soil-less mix

23 (Sunshine mix # 4, Sun Gro Horticulture Canada Ltd, Spruce Grove, AB). A 5-ml pipette

1	tip was inserted into the soil-less mix in the centre of the pot. The seedlings were thinned
2	to one per pot after 5 days. The same nine treatments described previously were
3	examined in a RCBD with four replicates and 10 plants per replicate. The main group of
4	resting spore suspension treatments (5 ml, 3×10^5 spores ml ⁻¹) were applied to 5-day-old
5	seedlings and secondary zoospore treatments were applied to 10-day-old seedlings, as in
6	the initial trial. However, secondary zoospores were applied by removing the 5 ml pipette
7	tip from each pot and planting five infected seedlings into the cavity created by the
8	pipette tip (36). Non-inoculated plants were used as a control. The seedlings used for
9	inoculation were removed after 5 days.
10	The plants were harvested 52 days after seeding, which was 42 days (6 wks) after
11	inoculation with secondary zoospores. Plant height above the hypocotyl was measured
12	and the roots were washed and assessed for clubroot incidence and severity, based on
13	visual symptoms of root clubbing. The plants were separated into classes using a standard
14	0–3 scale, where 0 = no clubbing, $1 < 1/3$ of the root with symptoms of clubbing, 2 =
15	1/3-2/3 clubbed, and $3 > 2/3$ clubbed (31). A disease severity index (DSI) was calculated
16	using the following equation (43):

$$DSI = \frac{\sum [(class no.)(no. of plants in each class)]}{(total no. plants per sample)(no. classes - 1)} \times 100$$

Each root was then prepared, sectioned, and stained, and the intensity of cortical infection was assessed using the method of Sharma et al. (39). A segment (0.5-cm-long) was cut from the top 0–1 cm of each taproot, dehydrated through an ethanol series, and a 4-um-thick cross-section was cut using a microtome. The sections (one per root, four per

1	treatment) were placed on a microscope slide and stained in 0.5% methylene blue for 5
2	min. Development of P. brassicae was assessed based on the presence of key
3	developmental stages: i) secondary plasmodia, ii) vegetative plasmodia, and iii) resting
4	spores . The number of cells that contained plasmodia or resting spores in each
5	microscope field (10x objective lens) were counted in five fields of view per section.
6	Cortical infection was assessed using image analysis, by estimating the area (%) occupied
7	by plasmodia and resting spores in digital images of each field of view (10x objective
8	lens) using image analysis software (Assess version 2.0, American Phytopathological
9	Society, St. Paul, MN). A total of 20 fields of view were assessed per treatment in the
10	trial. The trial was repeated.
11	To observe the location and extent of lignification, another set of 4-um-thick
12	cross-sections (one per root, four per treatment) was placed on a microscope slide and
13	stained with 1% toluidine blue O (TBO) for 3 min. These roots were examined using a
14	compound microscope following the method of Deora et al. (7). Lignified areas stained
15	blue and pectic substances stained pink-purple (36).
16	
17	Infectivity of resting spores from bead-shaped clubs
18	A study was conducted to determine if the resting spores produced in bead-shaped clubs
19	were infectious. In those treatments where bead-shaped clubs developed, the tap root and
20	lateral roots were collected, washed, diced into small pieces and used to inoculate 5-day-
21	old seedlings, with pieces from two roots applied to each seedling. Roots of non-
22	inoculated seedlings (negative control) and plants that had been inoculated with resting
23	spores of P6 (positive control) were also assessed. The inoculated plants were harvested 6

2 previously. The trial was laid out in a RCBD with four replicates and 10 plants per 3 replicate. The trial was repeated. 4 5 Nuclear visualization 6 The nuclei of zoospores forming within root hairs were stained and photographed. 7 Seedlings of the susceptible canola cv. 46A76 (Pioneer Hi-Bred, Caledon, ON) were grown at 24/20 °C in Conetainers filled with autoclaved (121° C for 30 min) sand. A 5-8 ml suspension of 1×10^6 resting spores ml⁻¹ of P6, prepared as described previously, was 9 10 applied at the base of each 8-day-old seedling; the control received water only. There 11 were three replications with three plants per replicate. Plants were watered every day as 12 required. The roots were harvested at 12 days after inoculation and preserved in ethanol: 13 acetic acid (3:1) solution. The harvested roots were stained with Hoechst 33258 14 (bisbenzimide H, Sigma-Aldrich Canada Ltd.) at 20 µg/ml and observed under an upright 15 Leica DM 6000B confocal laser scanning microscope (CLSM) (Leica Microsystems, 16 Concord, ON Canada). Only root hairs that contained the zoosporangial stages of primary 17 infection were targeted to observe the nuclei of secondary zoospores. An excitation 18 wavelength of 405 nm and an emission and detection channel of 427–490 nm were used. 19 To produce a fluorescence image, averaging (oversampling) was conducted. For Z-20 sectioning, 10 to 30 sections were obtained, depending on the depth of the sample. For 21 the overlaid image of fluorescence and differential interference contrast (DIC) presented, 22 the thickness of the sample was 35 μ m, for which 85 sections were obtained at a step size 23 of 0.42 µm.

wk after transplanting and assessed for clubroot incidence and severity as described

1	To stain the nuclei of flagellate zoospores, 100 μ l of secondary zoospores
2	suspension (produced as described previously) was placed on a lysine-coated glass-
3	bottomed culture dish (14-mm-diam., MatTek Corporation, MA). The zoospores were
4	fixed by adding 100 μl of 2% glutaral dehyde. Zoospores were allowed to settle on the
5	bottom of the dish for 30 min, rinsed three times in phosphate buffer (pH 6.8) at 2 min
6	intervals, stained for 1 min with DAPI (4'-6-diamidino-2-phenylindole, 1 μ g/ml water,
7	Sigma-Aldrich Canada Ltd.), rinsed with buffer, and mounted on a glass slide in 50%
8	glycerol with 0.1% p-phenylendiamine. The number of nuclei in each zoospore was
9	assessed using epifluorescence microscopy with a blue filter (wide band UV); excitation
10	band pass 360-385 nm (dichromatic beam splitter DM400) and emission barrier filter
11	420 nm (Olympus BX60F5 microscope, Olympus Optical Co. Ltd., Japan).
12	For nuclear staining of encysted zoospores, 5 ml of the secondary zoospore
13	suspension was concentrated by centrifugation at 5000g for 5 min, and then assessed as
14	described above. At least 25 flagellate or encysted zoospores were observed in each
15	assessment and the study was repeated.
16	The size of secondary zoospores produced and held in various solutions was
17	assessed. After harvesting the roots for secondary zoospore production as described
18	above, roots were incubated in a shaker in either deionized water, phosphate buffer
19	(Na ₂ HPO ₄ and NaH ₂ PO ₄ ; Sigma-Aldrich, St. Louis, MO) or sodium chloride
20	physiological solution (Sigma). The pH of the phosphate buffer and physiological saline
21	was adjusted to 7.0 with NaOH (Sigma). After 20 h of incubation, a suspension of
22	swimming or encysted zoospores (obtained by vortexing for 1 min) from each solution
23	was fixed with 1% glutaraldehyde. The length and width of 30 fixed zoospores from each

1 solution were measured on photos taken using a stereo binocular microscope (Nikon

- 2 Eclipse 5.1, Nikon Corporation, Japan).
- 3

4 Statistical analysis

5 There were two repetitions of each experiment investigating infection and symptom 6 development. A general linear model analysis of variance was conducted using Proc 7 GLM of SAS version 9.1 (SAS Institute, Inc., 2010, Cary, NC). Prior to analysis, root 8 hair infection (RHI, %), clubroot incidence (%), clubroot severity (disease severity index, 9 DSI), and area of cortical infection (%) data were arcsine transformed to improve the 10 normality and homogeneity of variance, but non-transformed means are presented for 11 uniformity of presentation. There was no repetition effect or repetition × treatment 12 interaction for any response variable, so the repetitions of each trial were pooled for 13 subsequent analysis. Means separation was conducted using Tukey's test at $\alpha \leq 0.05$. The 14 correlation between cortical colonization and disease severity index was examined using 15 Pearson's correlation coefficient in Proc Corr of SAS.

16 In the infection and symptom development trials, a few specific comparisons were 17 particularly important for hypothesis testing. Comparison of RS-P6 with SZ-P6 provided 18 a measure of the role of primary infection in initiation of resistance to an avirulent 19 pathotype. Similarly, comparison of RS-P3 with SZ-P3 provided a measure of the role of 20 primary infection in suppression of resistance to a virulent pathotype. Comparison of RS-21 P6+SZ-P3 vs. RS-P3+SZ-P3 provided a measure of the role of early initiation of an 22 incompatible host reaction (P6) or a compatible reaction (P3) prior to secondary infection 23 and subsequent development of the virulent pathotype (SZ-P3). Similarly, comparison of

Page 14 of 40

1	RS-P6+SZ-P3 with SZ-P3 provides a measure of the impact of early initiation of
2	resistance on subsequent development of a virulent pathotype, and comparison of RS-
3	P3+SZ-P3 with SZ-P3 provides a measure of the impact of early suppression of
4	resistance on subsequent development of a virulent pathotype.
5	
6	Results
7	Primary infection
8	Each of the inoculation treatments resulted in root hair infection (RHI, Table 1). At 13
9	and 15 DAS (3 and 5 days after inoculation), RHI was higher following inoculation with
10	SZ-P3 compared to SZ-P6. Substantial levels of infection were first observed at 1 day
11	after inoculation in plants inoculated with RS-P3+SZ-P3 (63%), RS-P3 (46%) and RS-
12	P6+SZ-P3 (35%). At 15 DAS (5 days after inoculation), RHI was relatively high for all
13	of the treatments except RS-P6@10 DAS (26%), although differences among treatments
14	were still evident. RHI was higher for RS-P3 than RS-P6 and higher for SZ-P3 than SZ-
15	P6. RHI with RS-P3+SZ-P3 was higher than RS-P3 alone However, RHI was higher
16	with RS-P3+SZ-P3 than RS-P6+SZ-P3.
17	The incidence of RHI increased over time. There was a small inoculation
18	treatment x sampling date interaction (F=148.5, P = 0.0001 , as compared to F= 5308 for
19	sampling date and 2249 for treatment), but inoculation treatment generally continued to
20	exhibit a similar pattern of response at the later assessment dates to that observed at 11
21	DAS.
22	

1 Secondary infection

2	The most important differences in this study were observed in infection of the root cortex
3	(Fig. 1) and subsequent symptom expression (Table 2). Substantial numbers of plasmodia
4	in the root cortex were observed at 11 DAS in plants inoculated with RS-P3+SZ-P3 (15
5	secondary plasmodia) and RS-P3 (10 secondary plasmodia). Plasmodia were first
6	observed at 13 DAS in plants inoculated with RS-P3@10 DAS and SZ-P6, and at 15
7	DAS in plants inoculated with RS-P6@10 DAS. Plasmodia produced from primary and
8	secondary zoospores were similar in morphology (Fig. 2 A, B).
9	By 15 DAS, the differences among treatments were even more distinct than at the
10	earlier assessment dates (Fig. 1). As expected, inoculation with RS-P3 resulted in many
11	more secondary plasmodia per field of view (mean of 24 plasmodia per field) than RS-P6
12	(12 plasmodia). Inoculation with secondary zoospores alone resulted in fewer plasmodia
13	than resting spores of the same pathotype; 12 plasmodia for RS-P6 vs. 9.5 plasmodia for
14	SZ-P6, and 24 plasmodia for RS-P3 vs. 16 plasmodia for SZ-P3. RS-P3+SZ-P3 resulted
15	in more plasmodia (30 plasmodia) than either SZ-P3 alone (15 plasmodia) or RS-P3
16	alone (24 plasmodia). RS-P6+SZ-P3 resulted in fewer plasmodia than RS-P3+SZ-P3 (15
17	vs. 30). There were no differences in the number of plasmodia when SZ-P3 was applied
18	alone or in combination with RS-P6.

19

20 Symptom development

21 The pattern of symptom development and the extent and development of cortical

22 infection were evaluated at 52 DAS. The area of cortical infection, clubroot severity, and

23 the number of cells containing resting spores all showed the same pattern of response to

Page 16 of 40

1	inoculation treatment (Table 2). The area of cortical colonization and the disease severity
2	index were highly correlated (r = 0.92; $P < 0.0001$). These trends were similar to that of
3	early (15 DAS) cortical infection above, except that no symptoms developed on plants
4	inoculated with RS-P6, even though some plasmodia had developed by 15 DAS and
5	young plasmodia were still visible at 47 DAS (22 infected cells per field of view).
6	In both the compatible and incompatible interactions, inoculation with resting
7	spores elicited a different pattern of response than inoculation with secondary zoospores
8	(Table 2). Inoculation with RS-P3 resulted in the highest values for both area of cortical
9	infection (33%) and number of cells with resting spores (32 cells), and 100% clubroot
10	incidence and severity. SZ-P3 produced less cortical infection (12%) and lower incidence
11	and severity (78% and 67% DSI) than RS-P3. The opposite pattern was observed in the
12	incompatible interaction; inoculation with RS-P6 produced 0% clubroot incidence (no
13	symptoms), but inoculation with SZ-P6 produced low levels of cortical infection (4%)
14	and development of resting spores (2 cells). Clubroot symptoms developed following
15	inoculation with SZ-P6, with a low incidence and severity consisting solely of small
16	bead-shaped clubs.
17	RS-P3+SZ-P3 produced 100% incidence and severity and the highest cortical
18	infection and number of cells with resting spore, the same as RS-P3 alone (Table 2).
19	However, RS-P6+SZ-P3 resulted in reduced levels of pathogen development in the root

20 cortex: incidence and severity were lower (85% and 86% DSI), as was the area of cortical

- 21 infection (18%) and number of cells with resting spores (26 cells). The only unusual
- 22 result was the comparison of SZ-P3 with RS-P6+SZ-P3. Inoculation with RS-P6+SZ-P3

Page 17 of 40

resulted in higher area of cortical infection, more resting spores, and higher clubroot
 severity than SZ-P3 alone.

3 No clubs developed on plants inoculated with RS-P6 or on the non-inoculated 4 control (Table 2). Typical large clubs developed on all of the other treatments. The only 5 exception was SZ-P6, where tiny, bead-shaped clubs developed in strings or clusters 6 along the root (Fig. 2C, D, E). Resting spores were present in the infected cortical cells of 7 the bead-shaped clubs (Fig. 3F). About 20 plants were assessed after an additional 2 wk 8 of growth (8 wk after inoculation), and the size and shape of the clubs had not changed. 9 Plant height and shoot weight were generally highest, and root mass and clubroot 10 incidence and severity were lowest, in plants with no clubbing (inoculated with RS-P6 or 11 controls) or with bead-shaped clubs (SZ-P6), intermediate with RS-P6+SZ-P3 and SZ-P3, 12 and lowest / highest in plants with large clubs (RS-P3 and RS-P3+SZ-P3) (Table 2). 13 Similarly, the root biomass of plants inoculated with RS-P6 (1.1 g) and SZ-P6 (1.4 g) 14 were similar, but only SZ-P6 produced clubroot symptoms, although the bead-shaped 15 clubs were considerably smaller in size and weight than typical clubs (Table 2). 16 Proliferation of P. brassicae resulted in severe distortion of root growth and 17 development (Fig. 3). In cross-sections of the roots of control plants, the periderm, cortex 18 and stele region were organised and continuous (Fig. 3A, B). In plants inoculated with 19 RS-P6, young plasmodia were observed in the cortical cells and stele, but the pathogen 20 did not develop further (Fig. 3C, D). As a result, plants inoculated with RS-P6 did not 21 differ morphologically from the controls. Typical clubs developed from inoculation with 22 RS-P3, RS-P3+SZ-P3, SZ-P3, and RS-P6+SZ-P3, but the clubs from inoculation with 23 SZ-P3 and RS-P6+SZ-P3 were smaller than normal. In all of the typical clubs, cortical

1	cells of the infected roots became enlarged and intermingled with the secondary phloem,
2	and the distinct organization of tissues into cortex, endodermis and stele was lost (Fig.
3	3G, H). The area occupied by cells with walls that stained for lignin in the stele decreased
4	rapidly during pathogen colonization (Fig. 3G, H).
5	In the bead-shaped clubs, cortical cells were highly plasmolysed and the stele was
6	continuous (Fig. 3E, F). The pathogen did not penetrate into the stele. As a result there
7	was limited cell proliferation in these tissues (Fig. 3F). Plants inoculated with resting
8	spores from the bead-shaped clubs became heavily infected and produced large clubs.
9	
10	Nuclear visualization
11	Zoosporangia were present in most of the infected root hairs at 12 days after inoculation.
12	In mature zoosporangia, the plasmodial cytoplasm was cleaved to produce individual
13	zoosporangia (Fig. 4A). CLSM observation showed that these zoosporangia were multi-
14	nucleate and each nuclei reflected production of uni-nucleate incipient secondary
15	zoospores within the root hairs. Depending on the size, 1-6 nuclei were present in a
16	zoosporangium ($n = 20$) and the nuclear size varied from 1.0 to 1.5 µm ($n = 50$) (Fig.
17	4A).
18	The flagellate secondary zoospores collected in deionized water had a mean
19	length of 14.4 μ m ± 0.19 and width 9.6 μ m ± 0.32 (n = 55), and all had two anterior
20	whiplash flagella (Fig. 4B). The mean diameter of encysted zoospores (Fig. 4D) obtained
21	by centrifugation was 21.7 μ m ± 0.37(<i>n</i> = 50). All of the flagellate and encysted
22	zoospores were uni-nucleate (Fig. 4C, 4D). Secondary zoospores that were released into

23 phosphate buffer or physiological saline were slightly smaller than those produced in

1	deionized water. The length and width of flagellate zoospores in phosphate buffer were
2	12.5 $\mu m \pm 0.23 \; x \; 8.7 \; \mu m \pm 0.25$ and in physiological saline were 11.8 $\mu m \pm 0.29 \; x \; 8.3$
3	$\pm \mu m$ 0.30. The diameters of encysted zoospores in phosphate buffer and physiological
4	saline were 17.8 $\mu m \pm 0.28$ and 17.3 $\mu m \pm 0.44,$ respectively.
5	
6	
7	Discussion
8	This is the first study to compare the roles of primary and secondary infection in both
9	compatible and incompatible reactions between <i>P. brassicae</i> and a host. We provide
10	evidence that root hair infection by P. brassicae plays an important role in host
11	recognition of the pathogen and influences the development of the pathogen at the
12	cortical infection stage. Canola cv. Zephyr was chosen because it is susceptible to
13	pathotype 3 (compatible reaction) and resistant to pathotype 6 (incompatible reaction);
14	these reactions were consistent across the trials. The severity of clubroot symptoms (DSI)
15	exhibited the same pattern of response as the extent of secondary infection of the root
16	cortex and the number of cells with resting spores, so these are the assessments that the
17	discussion will focus on.
18	Inoculation with RS-P6 (resting spores of pathotype P6, avirulent on cv. Zephyr)
19	resulted in no symptoms and very limited development of the pathogen, as expected in an
20	incompatible interaction. Inoculation with RS-P3 (resting spores of P3, virulent on cv.
21	Zephyr) resulted in the greatest symptom development and highest number of cortical
22	cells containing resting spores. This was as expected in a compatible reaction (6, 13, 17).

23 Inoculation with secondary zoospores of P6 alone (SZ-P6) resulted in much more cortical

1	infection than with RS-P6, while inoculation with SZ-P3 alone resulted in less cortical
2	infection than RS-P3. Comparison of the effect of inoculation with resting spores vs.
3	secondary zoospores on cortical infection and DSI provided a measure of the role of
4	primary infection in initiation of resistance or susceptibility. These results demonstrate
5	that primary infection plays a role in subsequent cortical infection in both compatible and
6	incompatible reactions. Cortical infection was almost completely suppressed after
7	primary infection with an avirulent pathotype (RS-P6), but the root cortex was infected
8	and colonized to a substantial extent with secondary zoospores of an avirulent pathotype
9	(SZ-P6). This indicates that primary infection with P6 induced a resistance response that
10	was most strongly expressed in the root cortex, although there was also a small effect on
11	pathogen development in root hairs. Conversely, cortical infection following primary
12	infection with a virulent pathotype (RS-P3) was more extensive than with secondary
13	zoospores of a virulent pathotype (SZ-P3) alone, which indicates that primary infection
14	induced susceptibility or suppressed resistance in the root cortex.
15	Comparison of RS-P6+SZ-P3 vs. RS-P3+SZP3 or SZ-P3 provided a measure of
16	the impact of early initiation of a resistance reaction on subsequent development of a
17	virulent pathotype. Inoculation with RS-P6+SZ-P3 resulted in less infection and lower
18	severity than RS-P3+SZP3 or SZ-P3. This response provides additional support for the
19	hypothesis that primary infection has a role in inducing resistance in an incompatible
20	reaction. In fact, it provides evidence that primary infection is an important step in
21	recognition of the avirulent pathogen. Similarly, comparison of RS-P3 vs. RS-P3+SZ-P3
22	or SZ-P3 alone provided a measure of the impact of early suppression of resistance on
23	subsequent development of a virulent pathotype in the compatible reaction. Inoculation

Page 21 of 40

1	with RS-P3 produced more cortical infection and higher severity than SZ-P3 alone, but
2	the same level of symptom expression and cortical infection as RS-P3+SZ-P3. This
3	indicates that primary infection results in a slight but potentially important suppression of
4	host defences in a susceptible host.
5	Inoculation with SZ-P6 resulted in infection of the root cortex and pathogen
6	development sufficient to produce viable resting spores. However, symptom development
7	was restricted to small, bead-like clubs. This indicates that if recognition of the avirulent
8	pathotype does not occur at the primary infection stage, initiation of a resistance response
9	was delayed but not completely suppressed.
10	Inoculation with RS-P3 and RS-P3+SZ-P3 resulted in the maximum possible
11	level of clubroot severity (100 DSI) and the greatest area of cortical infection, which
12	might represent the maximum that can occur in this host-pathogen interaction. The initial
13	inoculation with 5 ml of 10^5 ml ⁻¹ of resting spores may have been sufficient to produce
14	100 DSI. Indeed, there are other reports of 100% clubroot severity with similar (5 ml of 1
15	x 10^6 ml ⁻¹) concentrations of inoculum (7, 8. Repeating this comparison with a lower
16	inoculum concentration might help to elucidate the role of primary infection in a
17	compatible interaction.
18	The only result that did not support a role for primary infection in the initiation of
19	a resistance reaction in the host was the comparison of RS-P6+SZ-P3 vs. SZ-P3. If
20	primary infection by an avirulent pathotype stimulates the early initiation of host
21	resistance, inoculation with RS-P6 before adding SZ-P3 would be expected to suppress
22	infection and symptom development compared to secondary zoospores alone. However,
23	the reverse was observed. There was slightly more cortical infection with RS-P6+SZ-P3

Page 22 of 40

1 than with SZ-P3 alone (18% vs. 12%), more cells with resting spores (15 vs. 12 cells) and 2 higher clubroot severity (84 vs. 67 DSI). This may indicate that primary infection has a 3 larger role in suppressing host defences than in stimulating resistance. However, 4 additional work in this area is required. 5 Most physiological and molecular studies on clubroot have focused only on the 6 compatible relationship, and indicate that fewer physiological changes occur in the host 7 during the primary phase of the pathogen's lifecycle compared with the secondary stage 8 (3, 41). However, none of the effectors that mediate compatible and incompatible 9 relationships with P. brassicae have been identified or characterized. During infection in 10 many host-pathogen systems, the pathogen secretes effectors that interact with the host 11 and play an important role in virulence and/or the stimulation of a resistance 12 (incompatible) response (16, 20, 25, 28). To establish a successful infection, P. brassicae 13 must either suppress host resistance or fail to trigger host resistance. In either case, the 14 response is likely triggered by effectors. In nonhosts, *P. brassicae* triggered a resistance 15 response (33), but root hair infection was critical for induction of resistance to secondary 16 infection and subsequent club formation (12). 17 In a recent study of gene expression in primary and secondary zoospores of 18 *P. brassicae*, many more genes were up-regulated in primary zoospores than in secondary 19 zoospores (14). The authors suggested that the genes that were up-regulated in secondary 20 zoospores likely contribute to infection of cortical tissue. The results of the present study 21 support their hypothesis that there are specific mechanisms required for secondary 22 infection, in that secondary zoospores can infect the root cortex in the absence of primary

Page 23 of 40

infection, but primary infection has an important role in the recognition of a compatible
 or incompatible pathotype.

3 The results of the current study are also consistent with the results of a study 4 conducted to identify changes in host gene expression in Arabidopsis thaliana (L) Heynh 5 inoculated with the compatible *P. brassicae* ecotype Co-1 (1). At 4 days after inoculation 6 (which corresponds to primary infection), expression of several genes known to be 7 involved in pathogen recognition and signal transduction was induced. Also, many more 8 host genes were down-regulated than were up-regulated. Some of the down-regulated 9 genes were involved in lignin and salicylic acid biosynthesis, the oxidative burst 10 pathway, and several other defence-related genes. In general, these results support the 11 hypothesis that primary infection suppresses host resistance. They are also consistent 12 with a recent study that identified that a compatible *P. brassicae*/canola interaction is 13 characterized by a lack of the reactive oxygen species and a reduction in lignin relative to 14 an incompatible interaction (6).

15 Infection and development of P. brassicae in the root cortex of susceptible and 16 resistant cultivars has been studied in detail (6, 7, 11, 17, 19, 30). Clubroot resistance was 17 expressed most clearly and consistently in the root cortex, where pathogen development 18 occurred quickly in susceptible cultivars. Very little or no pathogen development was 19 observed in highly resistant radish (30) and canola cultivars (6). In the current study, 20 plasmodia were observed in the root cortex of plants inoculated with resting spores of the 21 avirulent pathotype, but these did not develop to produce resting spores and no clubs 22 developed on the roots. This is consistent with recent studies showing that resistance can

be expressed after some initial colonization of the root cortex in canola (7) and cabbage
 (17).

3 The present study provides some insights into the timing of the interaction 4 between effectors from *P. brassicae* and the host. Plants inoculated with resting spores of 5 the avirulent pathotype (P6) did not develop clubs, while direct inoculation with the 6 secondary zoospores of P6 resulted in infection and development of small bead-shaped 7 clubs. This indicates that the initial recognition of the pathogen normally occurs during 8 primary infection, so that the host is able to respond with effective resistance mechanisms 9 when challenged by secondary zoospores. Direct inoculation with secondary zoospores 10 either bypassed this recognition stage or did not provide enough time for the resistance 11 reaction to develop fully. However, the results of this study also showed that recognition 12 of the pathogen can occur during cortical infection and subsequent development of the 13 pathogen. Inoculation with secondary zoospores of the incompatible pathotype (P6) 14 resulted in lower levels of pathogen development than inoculation with secondary 15 zoospores of the compatible pathotype (P3), which in turn was lower than from 16 inoculation with resting spores of P3.

The small, bead-shaped clubs produced by secondary zoospores of P6 in this study appear to be similar to the spheroid galls reported in resistant reactions by Williams (45) and others (29). There is some disagreement in the literature as to whether this is a true resistance response. Rennie et al. (38) point out that several researchers considered these an indication of host resistance because the spheroid clubs (galls) represent a restriction of the pathogen within the host. However, the authors suggest that the formation of spheroid clubs should not be interpreted as complete resistance, since small

1	numbers of resting spores can develop in these clubs. The results of the current study
2	support the conclusion that this reaction does not represent complete resistance. Instead,
3	small clubs are produced when pathogen development is limited after some development
4	has already occurred in the root cortex. This in turn indicates that some component(s) of
5	host resistance was/were bypassed or delayed. Similarly, bead-shaped clubs were
6	observed on canola inoculated with secondary zoospores produced on a non-host (12).
7	This further supports the hypothesis that direct infection by secondary zoospores
8	bypasses recognition by the host during primary infection. However, clubbing symptoms
9	do not develop fully, likely because initiation of resistance is delayed or effectors at the
10	primary infection stage are required to allow a fully compatible interaction.
11	Differences in the incidence and development of primary infection of resistant and
12	susceptible host cultivars have been studied in detail (6, 11,). The results of the current
13	study support the observation that both virulent and avirulent pathotypes can infect root
14	hairs, but that the incidence of primary infection is higher in plants inoculated with
15	virulent pathotypes than with the avirulent pathotypes (6, 22). The present study also
16	confirms previous reports that secondary zoospores of P. brassicae can initiate both
17	primary and secondary infection (12, 13, 35).
18	Secondary zoospores were examined for the presence of bi-nucleate zoospores
19	because there were reports that bi-nucleate zoospores of P. brassicae result from fusion
20	of two zoospores (5, 44) and that cortical infection occurs after the secondary zoospores
21	fuse in pairs (10, 24). In the current study, all of the secondary zoospores were uni-
22	nucleate, which indicates that the majority of secondary zoospores do not fuse. Further
23	study into this phase of the life cycle is warranted. If fusion of secondary zoospores was

Page 26 of 40

1	a prerequisite to cortical infection, this would greatly reduce the effective inoculum
2	concentration. The secondary zoospores in this study were morphologically identical to
3	primary zoospores (oval shaped, with one nucleus and two flagella of uneven length), as
4	has been reported in previous studies (12, 13, 27).
5	The average size of secondary zoospores released in deionized water after
6	mechanical shaking of the roots was 9.6 μ m x 14.4 μ m, while those released into
7	phosphate buffer were slightly smaller. Secondary zoospores observed within root hairs
8	were reported to be much smaller, 2.5 μ m x 3.5 μ m (24) or 1.5 x 0.5-0.7 μ m (5).
9	Differences in the size of secondary zoospores were also observed when they were
10	switched from 10% glucose solution to water (Feng, unpublished). Since the zoospores in
11	the present study were released in deionized water, it is highly likely that they would take
12	up more water and swell to a larger size than those in a buffer or an ionized solution.
13	Secondary zoospores within a root hair are likely smaller than released zoospores as a
14	result of higher osmotic or physical pressure in the root hairs. This is the first report of
15	the size of free living secondary zoospores.
16	The methods used to produce and collect secondary zoospores were those of Feng
17	et al. (12). This method has several advantages over using infected plants as a source of
18	secondary zoospores, since the inoculum concentration can be quantified and adjusted as
19	required. However, it proved to be difficult to consistently obtain large quantities of
20	secondary zoospores, so infected seedlings were used as a source of secondary zoospores
21	(35) for some of the studies. The results using this approach were consistent between

22 repetitions of the study and exhibit a similar pattern of response to studies using collected

Page 27 of 40

secondary zoospores, so we conclude that this is a suitable inoculation approach for use
 in future studies.

3 In summary, this is the first study to demonstrate that the primary infection phase 4 of *P. brassicae* plays an important role in host recognition of the pathogen. The results 5 support the hypothesis that primary infection suppresses the initiation of resistance in a 6 susceptible cultivar and also stimulates the resistance reaction in a resistant cultivar. It 7 appears likely that pathogen effectors are recognized at the primary infection stage and 8 that this early interaction between host and pathogen contributes to the resistant or 9 susceptible reaction in the host at the secondary infection stage. Induction of 10 susceptibility was more effective than initiation of resistance in the two pathotype/host 11 interactions examined. Recognition of the pathogen as compatible or incompatible also 12 occurred in the root cortex, but the resistance reaction developed more quickly and was 13 expressed more strongly in response to primary infection. Our results were consistent 14 with independent studies of gene expression in the pathogen and host in a compatible 15 interaction. However, additional study at the molecular level is needed to further 16 elucidate the role of primary and secondary zoospores in pathogenesis.

17

Acknowledgements. The authors thank the Clubroot Risk Mitigation Initiative of
Agriculture and Agri-Food Canada and the Canola Council of Canada for financial
support, and the Animal Health Lab, University of Guelph, for root section preparation
and staining.

22

23

References

2	1. Agarwal, A., Kaul, V., Faggaian, R., Rookes, J. E., Ludwig-Muller, J., and Cahill,
3	D. 2011. Analysis of global host gene expression during the primary phase of the
4	Arabidopsis thaliana-Plasmodiophora brassicae interaction. Funct. Plant Biol.
5	38:462–478.
6	2. Agrios, G. N. 2005. Plant Pathology. Elsevier Academic Press. Amsterdam. 922
7	pp.
8	3. Cao, T., Srivastava, S., Rahman, M.H., Kav, N.N.V., Hotte, N., Deyholos, M.K.,
9	and Sterelkov, S.E. 2008. Proteome-level changes in roots of Brassica napus as a
10	result of Plasmodiophora brassicae infection. Plant Sciencd, 174:97-115.
11	4. Cao, T., Manolii, V. P., Hwang, S. F., Howard, R. J., and Strelkov S. E. 2009.
12	Virulence and spread of <i>Plasmodiophora brassicae</i> [clubroot] in Alberta, Canada.
13	Can. J. Plant Pathol. 31 :321–329.
14	5. Cook, W. R. I., and Swartz, E. J. 1930. The life-history, cytology and method of
15	infection of <i>Plasmodiophora brassicae</i> Wor., the cause of the finger-and-toe disease
16	of cabbages and other crucifers. Philos. Trans. R. Soc. Lond. 218:283-314.
17	6. Deora A., Gossen B. D., McDonald M. R. 2012. Infection and development of
18	Plasmodiophora brassicae in resistant and susceptible canola cultivars. Can. J. Plant
19	Pathol. 34:239–247. DOI:10.1080/07060661.2012.681071.
20	7. Deora, A., Gossen, B. D., and McDonald, M. R. 2013. Cytology of infection,
21	development, and expression of resistance to <i>Plasmodiophora brassicae</i> in canola.
22	Ann. Appl. Biol. 163:56-71. doi:10.1111/aab.12033.

1	8. Dixon, G. R. 2009. <i>Plasmodiophora brassicae</i> in its environment. J. Plant Growth
2	Regul. 28 :212–228.
3	9. Diederichsen, E., Frauen, M., Linders, E. G. A., Hatakeyama, K., and Hirai, M.
4	2009. Status and perspectives of clubroot resistance breeding in crucifer crops. J.
5	Plant Growth Regul. 28:265–281.
6	10. Dobson, R. L., and Gabrielson, R. L. 1983. Role of primary and secondary
7	zoospores of Plasmodiophora brassicae in the development of clubroot in Chinese
8	cabbage. Phytopathology 73 :559–561.
9	11. Donald, E. C., Jaudzems, G., and Porter, I. J. 2008. Pathology of cortical invasion
10	by Plasmodiophora brassicae in clubroot resistant and susceptible Brassica
11	oleracea hosts. Plant Pathol. 57:201–209.
12	12. Feng, J., Xiao, Q., Hwang, S. F., Strelkov, S. E., and Gossen, B. D. 2012. Infection
13	of canola by secondary zoospores of Plasmodiophora brassicae produced on a non-
14	host. Eur. J. Plant Pathol. 132:309-315.
15	13. Feng, J., Hwang, S. F., and Strelkov, S. E. 2013. Studies into primary and secondary
16	infection processes by <i>Plasmodiophora brassicae</i> on canola. Plant Pathol. 62:177-
17	183.
18	14. Feng, J., Hwang, S. F., and Strelkov, S. E. (2013). Assessment of gene expression
19	profiles in primary and secondary zoospores of Plasmodiophora brassicae by dot
20	blot and real-time PCR. Microbiol. Res in press.
21	DOI:10.1016/j.micres.2013.02.011).
22	15. Friberg, H., Lagerlof, J., and Ramert, B. 2006. Usefulness of non-host plants in
23	managing Plasmodiophora brassicae. Plant Pathol. 55:690-695

1	16. Gan, P. H. P., Rafiqi, M., Hardham, A. R., and Dodds, P. N. 2010. Effectors of
2	biotrophic fungal plant pathogens. Funct. Plant Biol. 37:913–918.
3	17. Gludovacz, T.V. 2013. Clubroot in canola and cabbage in relation to soil
4	temperature, plant growth and host resistance. M.Sc. Thesis. University of Guelph,
5	Guelph, ON.
6	18. Gossen, B. D., McDonald, M. R., Hwang, S. F., Strelkov, S. E., and Peng, G. 2013.
7	Comparison of clubroot (Plasmodiophora brassicae) development and management
8	on canola and Brassica vegetables. Can. J. Plant Pathol. 35:175-191.
9	19. Gustafsson, M., Liljeroth, E., Gunnarsson, M., and Lundborg, T. 1986. Effects of
10	infection by <i>Plasmodiophora brassicae</i> on root anatomy of rape. J. Phytopathol.
11	117 :144–151.
12	20. Hoghenhout, , S.A., Van der Hoorn, R.A., Terauchi, R. and Kamoun, S. 2009.
13	Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-
14	<i>Microbe Interact.</i> 22 :115–122.
15	21. Howard, R. J., Strelkov, S. E., and Harding, M. W. 2010. Clubroot of cruciferous
16	crops – New perspective on an old disease. Can. J. Plant Pathol. 32 :43–57.
17	22. Hwang, S. F., Ahmed, H. U., Zhou, Q., Strelkov, S. E., Gossen, B. D., Peng, G., and
18	Turnbull, G. D. 2012. Assessment of the impact of resistant and susceptible canola
19	on <i>Plasmodiophora brassicae</i> inoculum potential. Plant Pathol. 61 :945-952. Doi:
20	10.1111/j.1365-3059.2011.02582.x.
21	23. Hwang, S. F., Strelkov, S. E., Feng, J., Gossen, B. D., and Howard, R. J. 2012.
22	Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian
23	canola (Brassica napus) crop. Mol. Plant Pathol. 13:105–113.

1	24. Ingram, D. S., and Tommerup, C. 1972. The life history of <i>Plasmodiophora</i>
2	brassicae Woron. Proc. R. Soc. Lond. Ser. B, 180:103-112.
3	25. Jones, J. D. J., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-
4	329.
5	26. Jones, D. R., Ingram, D. S., and Dixon, G. R. 1982. Characterization of isolates
6	derived from single resting spores of Plasmodiophora brassicae and studies of their
7	interaction. Plant Pathol. 31:239–246.
8	27. Kageyama, K., and Asano, T. 2009. Life cycle of <i>Plasmodiophora brassicae</i> . J.
9	Plant Growth Regul. 28:203–211.
10	28. Kamoun, S. 2006. A catalogue of the effector secretome of plant pathogenic
11	oomycetes. Ann. Rev. Phytopathol. 44:41-60.
12	29. Kobelt, P., Siemens, J., and Sacristán, M. D. 2000. Histological characterization of
13	the incompatible interaction between Arabidopsis thaliana and the obligate
14	biotrophic pathogen <i>Plasmodiophora brassicae</i> . Mycol. Res. 2:220–225.
15	30. Kroll, T. K., Lacy G.H., and Moore L. D. 1983. A quantitative description of the
16	colonization of susceptible and resistant radish plants by <i>Plasmodiophora brassicae</i> .
17	J. Phytopathology 108 :97–105.
18	31. Kuginuki, Y., Yoshikawa, H., and Hirai, M. 1999. Variation in virulence of
19	Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of
20	Chinese cabbage (Brassica rapa L. ssp. pekinensis). Eur. J. Plant Pathol. 105:327-
21	332.
22	

1	32. LeBoldus, J.M., Manolii, V.P., Turkington, K.T. and Sterlkov, S.E. 2012.
2	Adaptation to Brassica Host Genotypes by a Single-Spore Isolate and Population of
3	Plasmodiophora brassicae (Clubroot). Plant Dis. 96:833-838
4	33. Ludwig-Muller, J., Ihmig, S., Bennett, R., Kiddle, G., Ruppel, M., and Hilgenberg,
5	W. 1999. The host range of <i>Plasmodiophora brassicae</i> and its relationship to
6	endogenous glucosinolate content. New Phytol. 141:443-458.
7	34. Macfarlane, I. 1952. Factors affecting the survival of <i>Plasmodiophora brassicae</i>
8	Wor. in the soil and its assessment by a host test. Ann. Appl. Biol. 39 :239–256
9	35. Naiki, T., Kawaguchi, C., and Ikegami, H. 1984. Root hair reinfection in Chinese
10	cabbage seedlings by the secondary zoospores of Plasmodiophora brassicae
11	Woronin. Ann. Phytopathol. Soc. Jap. 50:216–220.
12	36. Peterson, R.L., Peterson, C.A., and Melville, L.H. 2008. Teaching plant anatomy
13	through creative excercises. NRC Press. Ottawa. 164 pp.
14	37. Rennie, D. C., Manolii, V. P., Plishka, M., and Strelkov, S. E. 2012. Histological
15	analysis of spindle and spheroid root galls caused by <i>Plasmodiophora brassicae</i> .
16	Eur. J. Plant Pathol. In press. DOI 10.1007/s10658-012-0119-x.
17	38. Sharma, K., Gossen, B. D., and McDonald, M. R. 2011a. Effect of temperature on
18	primary infection by Plasmodiophora brassicae and initiation of clubroot
19	symptoms. Plant Pathol. 60:830–838.
20	39. Sharma, K., Gossen, B. D., and McDonald, M. R. 2011b. Effect of temperature on
21	cortical infection by <i>Plasmodiophora brassicae</i> and clubroot severity.
22	Phytopathology 101:1424–1432.

1	40. Sharma, K., Gossen, B. D., Greenshields, D., Selvaraj, G., Strelkov, S. E., and
2	McDonald, M. R. 2013. Reaction of lines of the Rapid Cycling Brassica Collection
3	and Arabidopsis thaliana to selected pathotypes of Plasmodiophora brassicae. Plant
4	Dis. 97:720–727.
5	41. Siemens, J., Keller, I., and Sarx, J. 2006. Transcriptome analysis of Arabidopsis
6	clubroots indicate a key role for cytokinins in disease development. Mol. Plant-
7	Microbe. Interact. 19:480–494.
8	42. Strelkov, S. E., Manolii, V. P., Cao, T., Xue, S., and Hwang, S. F. 2007. Pathotype
9	classification of Plasmodiophora brassicae and its occurrence in Brassica napus in
10	Alberta, Canada. J. Phytopathol. 155:706–712.
11	43. Strelkov, S. E., Tewari, J. P., Smith, E., and Smith-Degenhardt, E. 2006.
12	Characterization of <i>Plasmodiophora brassicae</i> populations from Alberta, Canada.
13	Can. J. Plant Pathol. 28:467–474.
14	44. Tommerup, I. C., and Ingram, D. S. 1971. The life history of <i>Plasmodiophora</i>
15	brassicae Woron. in Brassica tissue cultures and in intact roots. New Phytol.
16	70 :327–332.
17	45. Williams, P. H. 1966. A system for the determining of races of <i>Plasmodiophora</i>
18	brassicae that infect cabbage and rutabaga. Phytopathology 56:624-626.
19	46. Xue, S., Cao, T., Howard, R. J., Hwang, S. F., and Strelkov, S. E. 2008. Isolation
20	and variation in virulence of single-spore isolates of Plasmodiophora brassicae
21	from Canada. Plant Dis. 92:456–462.
22	

Table 1. Incidence of primary infection (root hair infection, RHI) on canola cv. Zephyr resulting from inoculation with resting spores (RS) and secondary zoospores (SZ) of pathotypes 3 (P3) and 6 (P6) of *Plasmodiophora brassicae*, assessed at 11, 13, and 15 days after seeding (DAS) (1, 3 and 5 days after inoculation with secondary zoospores).

Spore type &	Root hair infection (%)		
pathotype	11 DAS	13 DAS	15 DAS
RS-P6 $(10 \text{ DAS})^1$	$2 a^2$	15 a	26 a
RS-P3 (10 DAS)	3 a	26 b	48 b
SZ-P6	4 a	32 c	55 c
SZ-P3	10 a	47 e	74 e
RS-P6	22 b	41 d	50 b
RS-P6+SZ-P3	35 c	55 f	60 d
RS-P3	46 d	64 g	72 e
RS-P3+SZ-P3	63 e	73 h	80 f
Standard error	0.44	1	0.7

¹The (10 DAS) treatments were inoculated with resting spores at the same time as the secondary zoospore treatments were applied. All other resting spore treatments were applied 5 DAS ²Values are the means of eight replications, with one plant per rep. Means within a column followed by the same letter do not differ at P < 0.05 based on Tukey's test.

Fig. 1. Secondary infection (number of plasmodia per field of view) of canola 'Zephyr'at 1, 3, and 5 days after inoculation with resting sores or secondary zoospores'. The regression slopes among the treatments were similar therefore are not presented. Data points are the means of observed values of eight replications (one plant per rep). Means at 5 days after inoculation with the secondary zoospores followed by the same letter do not differ based on Tukey's test at $P \le 0.05$. Capped lines = standard error.

Fig. 2. (**A**) Infected root hair (arrow) and (**B**) young secondary plasmodia (arrow) on canola root inoculated with secondary zoospores of pathotype 6 (avirulent on cv. Zephyr) of *Plasmodiophora brassicae*. (**C**, **D**, **E**) Bead-shaped clubs from inoculation with secondary zoospores of pathotype 6.

Table 2. Clubroot severity on harvested roots, and area of cortical infection (%), number of infected cells with young plasmodia, mature plasmodia, or resting spores in five fields of view in sections of canola roots, and mean plant height (cm), shoot weight (g) and root weight (g) of canola cv. 'Zephyr', assessed at 52 days after seeding, which was 47 days after inoculation with resting spores (RS) and 42 days after inoculation with secondary zoospores (SZ) of pathotypes 3 (P3) and 6 (P6) of *Plasmodiophora brassicae*.

Spore type & pathotype	Incidence (%)		Number of infected cells				Plant growth parameters		
		Severity (%)	Area of cortical infection (%)	Young plasmodia	Mature plasmodia	Resting spores	Plant height (cm)	Shoot wt. (g)	Root wt. (g)
RS-P6	$0 a^1$	0 a	0.1 a	22 d	0 a	0 a	49 c	4.0 c	1.1 a
SZ-P6	67 b	31 b	4 b	13 c	6 b	2 b	54 c	4.0 c	1.4 a
SZ-P3	78 c	67 c	12 c	6 b	12 d	12 c	28 b	3.0 b	2.2 b
RS-P6+ SZ-P3	85 c	84 d	18 d	1 a	15 e	26 d	28 b	2.6 b	2.2 b
RS-P3	100 d	100e	33 e	1 a	10 c	32 e	15 a	1.3 a	3.6 c
RS-P3+ SZ-P3	100 d	100 e	34 e	1 a	9 c	32 e	10 a	1.0 a	4.2 c
Control	0	0	0	0	0	0	50 c	4.6 c	1.1 a
Standard error	0.97	1.8	0.40	0.44	0.48	0.60	1.1	0.68	0.97

¹Values are the means of eight replications (10 plant per rep for incidence, severity and plant growth parameters, one plant and five fields of view per rep, for data on number of infected cells). Means in the columns followed by the same letter do not differ based on Tukey's test at $P \le 0.05$.

Fig. 3. Cross-section of roots of healthy and P. brassicae-infected canola plants, stained with TBO. (A) Healthy root (control). Lignified xylem cell walls stain dark blue, non-lignified walls are pink. (B) Magnified region from (A) showing intact stele, cortex and periderm. (C) Roots of plants inoculated with resting spores of pathotype 6 (avirulent on cv. Zephyr. (D) Magnified region from (C) showing intact stele, cortex and periderm (young plasmodia are marked with arrow). (E) Bead-shaped clubs produced after inoculation with secondary zoospores of P6. Note the proliferation of cortical tissue outside of the stele, and no proliferation within the stele. (F) Magnified region from (E) showing young plasmodia, mature plasmodia and resting in the cortical cells. (G) Typical clubs. Stele region is disrupted. (H) Magnified region from (G) showing invasion and expansion of stele (marked with black boundaries). Annotations: x, xylem; ph, phloem; 1° cx, primary cortex; 2° cx, secondary cortex; pd, periderm; st, stele.

146x222mm (72 x 72 DPI)

Fig. 4. Developmental stages and nuclear visualization in secondary zoospores (A) CLSM micrograph (overlaid fluorescence and DIC image) of an infected root hair stained with Hoechst 33258 showing the plasmodial mass cleaved into zoosporangia. Each zoosporangium contains a varying number (1 to 6) of nuclei that represent incipient secondary zoospores. (B) to (D) Epifluorescence micrographs. (B) Phase contrast of a bi-flagellated zoospore produced by mechanical shaking of root hairs. (C) Fluoresce image of DAPI staining of a single nucleus in the flagellated zoospore. (D) An overlaid image (fluorescence and phase contrast) of an encysted uni-nucleate zoospore (produced by centrifugation). 254x190mm (96 x 96 DPI)